Mapping amazon Reviews to Stars

Irene Won Choi & Khushant Khurana

O1 Problem Statement
O2 Pre-Processing
O3 Model Development

04 Results

05 Hyperparameter Tuning

06 † Future Work

Problem Statement

OBJECTIVE

- Develop a machine learning model to classify textual reviews by predicting what the rating of a product will be.

WHY?

- Stars offer a quantitative measure!
- Trends of given stars over time can be used for marketing because of their anonymous nature.

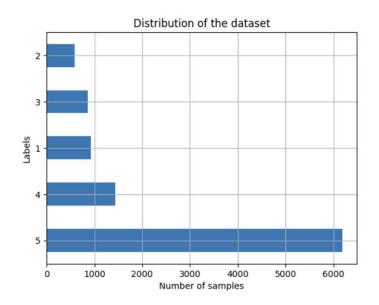
INTRO

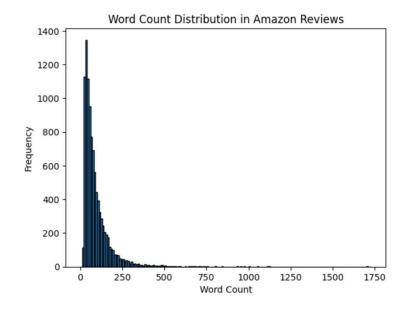
- Acquiring the dataset!
- Raw Data Exploration

Approach Source Kaggle: "Sentiment Analysis Python" by Rob Mulla Structure Size The dataset contains 568454 reviews. Distribution

Id	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	Text							
	1 B001E4KFG0	A3SGXH7	delmartian	1	ı	1 5	1.3E+09	Good Quality Dog Fo	I have boo	ight sever	al of the Vi	tality cann	ed dog for	d products	and have	found
	2 B00813GRG4	A1D87F62	dll pa	()	1.35E+09	Not as Advertised	Product a	rrived labe	led as Jum	bo Salted	Peanuts	the peanut	s were actu	ually si
	3 B000LQOCH0	ABXLMW.	Natalia Corres '	" 1	1	L 4	1.22E+09	"Delight" says it all	This is a co	onfection t	hat has be	en around	a few cen	turies. It is	a light, pil	llowy c
	4 B000UA0QIQ	A395BOR	Karl	3	3	3	1.31E+09	Cough Medicine	If you are	looking fo	r the secre	t ingredie	nt in Robit	ussin I beli	eve I have	found
	5 B006K2ZZ7K	A1UQRSC	Michael D. Bigh	ni () 5	1.35E+09	Great taffy	Great taff	y at a grea	price. The	ere was a v	vide assor	ment of y	ummy taffy	y. Deli
	6 B006K2ZZ7K	ADTOSRK:	Twoapennythir	n () 4	1.34E+09	Nice Taffy	I got a wil	d hair for t	affy and or	dered this	five poun	d bag. The	taffy was a	all very
	7 B006K2ZZ7K	A1SP2KVI	David C. Sulliva	ir () 5	1.34E+09	Great! Just as good	This saltw	ater taffy	had great f	lavors and	was very	oft and che	ewy. Each	candy
	8 B006K2ZZ7K	A3JRGQV	Pamela G. Willi	ia () :	1.34E+09	Wonderful, tasty tal	f This taffy	is so good	It is very	soft and ch	newy. The	flavors are	amazing.	I woul
	9 B000E7L2R4	A1MZYO9	R. James	1	1	1 5	1.32E+09	Yay Barley	Right now	I'm mostl	y just spro	uting this	o my cats	can eat the	grass. The	y love
	10 B00171APVA	A21BT40V	Carol A. Reed	() !	1.35E+09	Healthy Dog Food	This is a very healthy dog food. Good for their digestion. Also good for sma					mall pu		

Raw dataset





Q Preprocessing

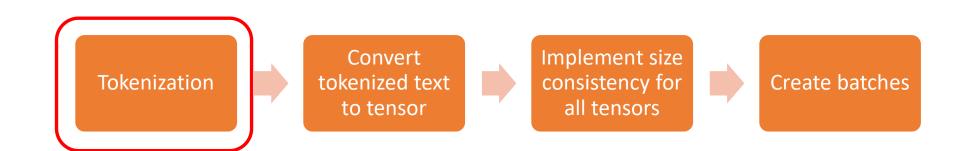
- Tokenization
- Preparing Data for the Model

Framework used


```
# Importing torch and its functionalities for text processing
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torch.nn.utils.rnn import pad_sequence
```

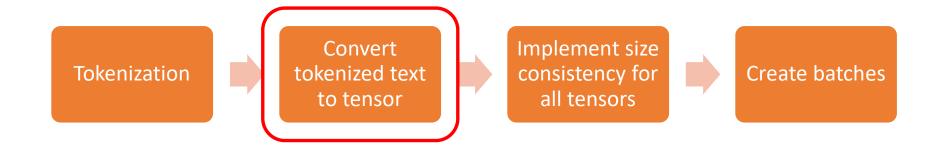
Importing torch and its extensions.

Methodology For Pre-Processing

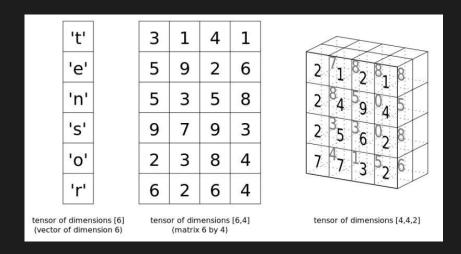


Tokenization

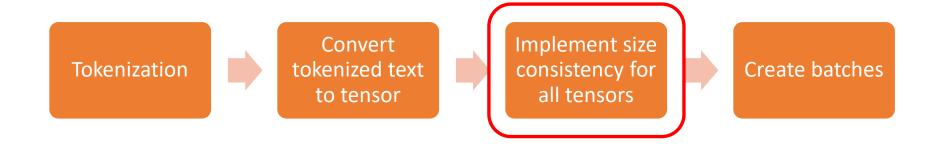
Methodology For Pre-Processing



Converting tokenized text to tensors



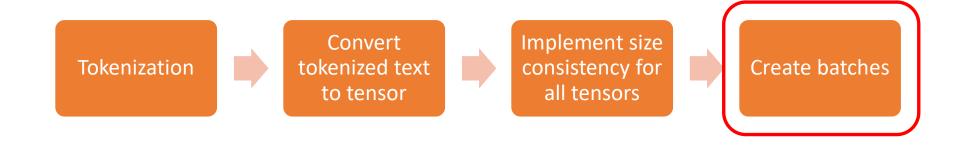
Methodology For Pre-Processing



Implementing size consistency for tensors


```
def collate_fn(batch):
    texts, labels = zip(*batch)
    texts_padded = pad_sequence(texts, padding_value=vocab["<pad>"])
    labels = torch.tensor(labels, dtype=torch.long)
    return texts_padded, labels
```


Methodology For Pre-Processing



Creating batches

```
x_train, x_test, y_train, y_test = train_test_split(
    x_data, y_data, test_size=0.2, shuffle=True
)

# Creating corresponding datasets and dataloaders.
# These can be treated as collection of data stored in a convenient format for Pytorch to pass around the neural network.

train_data = ReviewDataset(x_train, y_train, vocab) # Converting the texts to tokens and then to tensors.
train_loader = DataLoader(train_data, batch_size=32, shuffle=True, collate_fn = collate_fn) # Ensuring size consistency and preparing batches.
test_data = ReviewDataset(x_test, y_test, vocab)
test_loader = DataLoader(test_data, batch_size=32, shuffle=True, collate_fn = collate_fn)
```

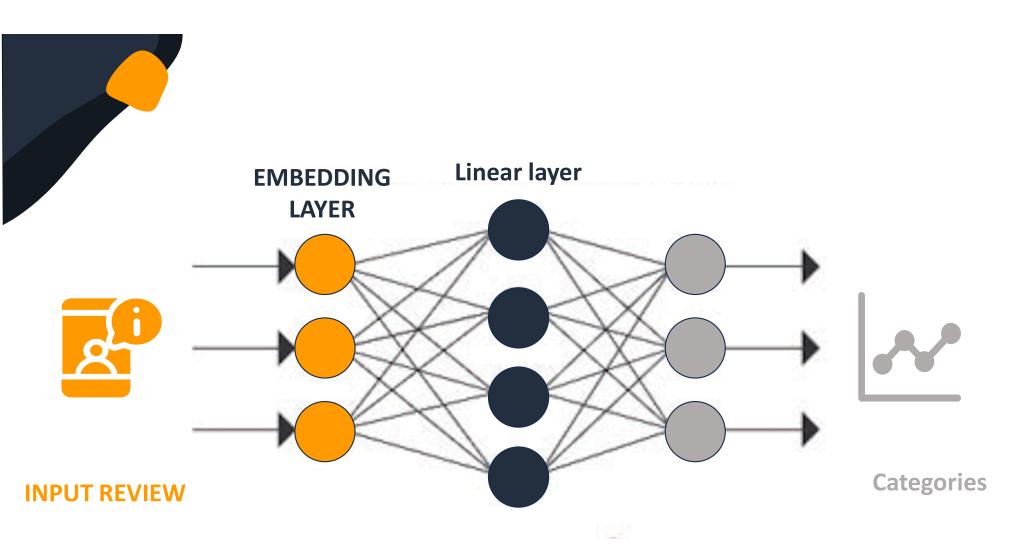
Model Development

- Creating Neural Network Model
- Defining training and validating functions
- Training and testing the model!

Neural Networks

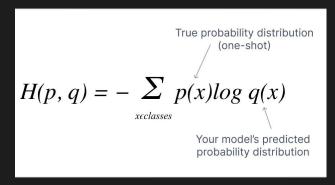
We used **Neural Networks**, which are a type of model inspired by human brain functioning to analyze the sentiment of Amazon reviews.

Embedding Layer: model that translates numbers (representing words) into vectors that capture the meaning of words.

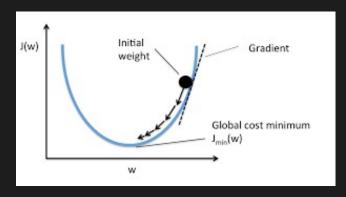


Creating the neural network

Initiating models and other features



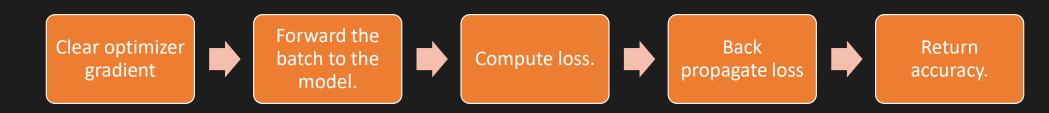
Cross entropy Loss



Stochastic Gradient Descent

```
model = neural(num_classes).to(device)
loss_function = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr = .5)
```

Training and validating models



```
def train_func(model, train_loader, optimizer, loss_function):
    # Initializing variables.
    train_loss = 0
    train_acc = 0
    num_examples = 0
    model.train()

# for each batch in train data loader
    for idx, batch in enumerate(train_loader):

#Parse the batch and extract the tensor for text and corresponding label.
    input_text, labels = batch[0], batch[1]

input_text = input_text.t()

# clear optimizer gradient
    optimizer.zero_grad()
```

```
# forward input_text through model
output = model(input_text)

# compute loss
# backpropagate loss
loss = loss_function(output, labels)
loss.backward()

optimizer.step()

# Compute total loss and accuracy
train_loss += loss.item()
train_acc += (output.argmax(1) == labels).sum().item()
num_examples += labels.size(0)

return train_loss / num_examples, train_acc / num_examples
```


- Training and Testing Accuracy scores.

```
Training Progress: 84%
                                   42/50 [02:13<00:22, 2.81s/epoch]Epoch: 42 | time in 0 minutes, 3 seconds
       Loss: 0.0345(train)
                                       Acc: 62.2%(train)
                                       Acc: 62.3%(valid)
       Loss: 0.0356(valid)
Training Progress: 86%
                                  43/50 [02:16<00:19, 2.74s/epoch|Epoch: 43 | time in 0 minutes, 2 seconds
       Loss: 0.0347(train)
                                       Acc: 62.1%(train)
       Loss: 0.0342(valid)
                                       Acc: 62.5%(valid)
Training Progress: 88%
                                  44/50 [02:19<00:16, 2.70s/epoch]Epoch: 44 | time in 0 minutes, 2 seconds
       Loss: 0.0349(train)
                                       Acc: 61.9%(train)
       Loss: 0.0346(valid)
                                       Acc: 62.6%(valid)
Training Progress: 90%
                                  45/50 [02:22<00:14, 2.90s/epoch]Epoch: 45 | time in 0 minutes, 3 seconds
       Loss: 0.0345(train)
                                       Acc: 62.2%(train)
                                       Acc: 62.5%(valid)
       Loss: 0.0355(valid)
                                  46/50 [02:25<00:11, 2.89s/epoch]Epoch: 46 | time in 0 minutes, 2 seconds
Training Progress: 92%
       Loss: 0.0347(train)
                                       Acc: 61.9%(train)
       Loss: 0.0386(valid)
                                       Acc: 62.6%(valid)
Training Progress: 94%
                                  47/50 [02:28<00:09, 3.01s/epoch]Epoch: 47 | time in 0 minutes, 3 seconds
       Loss: 0.0347(train)
                                       Acc: 61.9%(train)
       Loss: 0.0349(valid)
                                       Acc: 62.1%(valid)
                                 | 48/50 [02:31<00:05, 2.90s/epoch]Epoch: 48 | time in 0 minutes, 2 seconds
Training Progress: 96%
       Loss: 0.0344(train)
                                       Acc: 62.2%(train)
       Loss: 0.0346(valid)
                                       Acc: 62.3%(valid)
Training Progress: 98%
                                 | 49/50 [02:33<00:02, 2.74s/epoch]Epoch: 49  | time in 0 minutes, 2 seconds
       Loss: 0.0343(train)
                                       Acc: 62.5%(train)
       Loss: 0.0364(valid)
                                       Acc: 62.6%(valid)
Training Progress: 100%
                                 | 50/50 [02:35<00:00, 3.11s/epoch]Epoch: 50 | time in 0 minutes, 2 seconds
       Loss: 0.0346(train)
                                       Acc: 62.5%(train)
       Loss: 0.0351(valid)
                                       Acc: 62.7%(valid)
```

The accuracy seems to cap off around 63 percent.

M Hyperparameter tuning.

- Evolving the neural net to deep neural net.
- Varying learning rate.
- Varying number of epochs.
- Varying batch size.

Evolving the net to a deep net!

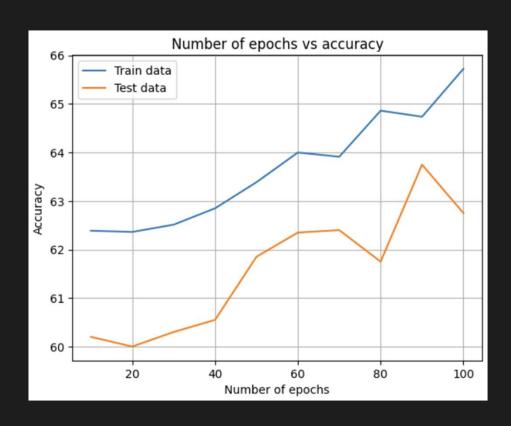
```
Training Progress: 97%
                                                                                                         97/100 [05:11<00:10, 3.39s/epoch]E
poch: 98 | time in 0 minutes, 3 seconds
       Loss: nan(train)
                                       Acc: 9.3%(train)
                                       Acc: 9.6%(valid)
       Loss: nan(valid)
Training Progress: 98%
                                                                                                         98/100 [05:15<00:06, 3.36s/epoch]E
poch: 99 | time in 0 minutes, 3 seconds
                                       Acc: 9.3%(train)
       Loss: nan(train)
       Loss: nan(valid)
                                       Acc: 9.6%(valid)
Training Progress: 99%
                                                                                                         99/100 [05:18<00:03, 3.41s/epoch]E
poch: 100 | time in 0 minutes, 3 seconds
                                       Acc: 9.3%(train)
       Loss: nan(train)
       Loss: nan(valid)
                                       Acc: 9.6%(valid)
Training Progress: 100%
                                                                                                       | 100/100 [05:22<00:00, 3.22s/epoch]
```

Deep nets are extremely bad. The resulting accuracy is less than 10%.

Iterating over learning rate

The best learning rate is around 0.8. After that the validation accuracy becomes constant.

Iterating over number of epochs



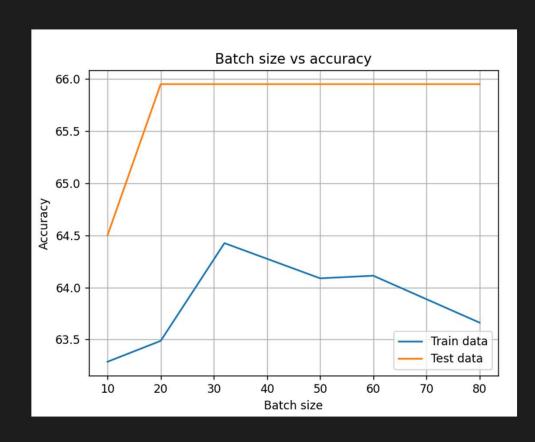
It seems like that the accuracy keeps increasing with the number of epochs. Lets test that!

Trying number of epochs = 200

```
Training Progress: 98%
                                                                                                         197/200 [08:18<00:06, 2.18s/epoch]E
poch: 198 | time in 0 minutes, 1 seconds
                                       Acc: 56.8%(train)
        Loss: 0.0351(train)
        Loss: 0.0335(valid)
                                       Acc: 62.6%(valid)
                                                                                                          198/200 [08:20<00:03, 1.93s/epoch]E
Training Progress: 99%
poch: 199 | time in 0 minutes, 1 seconds
                                       Acc: 56.9%(train)
        Loss: 0.0352(train)
                                       Acc: 62.5%(valid)
        Loss: 0.0330(valid)
                                                                                                         199/200 [08:21<00:01, 1.78s/epoch]E
Training Progress: 100%
poch: 200 | time in 0 minutes, 1 seconds
        Loss: 0.0352(train)
                                       Acc: 57.0%(train)
        Loss: 0.0342(valid)
                                       Acc: 62.6%(valid)
                                                                                                          200/200 [08:22<00:00, 2.51s/epoch]
Training Progress: 100%
```

So the accuracy does not keep rising with number of epochs. Accordingly, there must be a cutoff. Regardless, the accuracy is around 65 percent. But it could be said that the best accuracy comes around epoch size to be 100.

Iterating over batch size



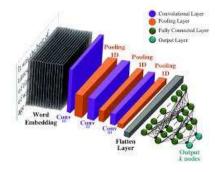
It seems that batch size of 32 has the highest accuracy.

11 Future Work

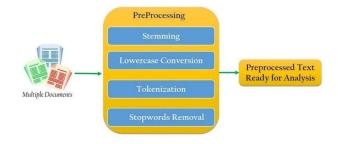
- Possible steps to increase model accuracy.

Future Work

Pre-trained word embeddings



Convolutional neural network



Better pre-processing for text data.