Mapping amazon Reviews to

Stars
Irene Won Choi & Khushant Khurana ‘

P

Contents

N’

01

02

03

04

05

06

Problem Statement

Pre-Processing

Model Development
Results
Hyperparameter Tuning

Future Work

Problem Statement

OBJECTIVE

Develop a machine learning model to classify
textual reviews by predicting what the rating

of a product will be.

WHY?

Stars offer a quantitative measure!
Trends of given stars over time can be used for
marketing because of their anonymous nature.

INTRO

Pl \ I { I - Acquiring the dataset!
- Raw Data Exploration

Approach

Source
Kaggle: “Sentiment Analysis Python” by Rob Mulla

Size

The dataset contains 568454 reviews.

Dataset

Userld ProfileName HelpfulnessNumerator HelpfulnessDenominator Score Time Summary Text

Productid

1 BOO1E4KFGO A3SGXH7/delmartian 1 1 5 1.3e+09 Good Quality Dog Fc | have bought several of the Vitality canned dog food products and have found
2 BOO813GRG4 A1D87F6Z dll pa 0 0 1 1.35E+09 Not as Advertised Product arrived labeled as Jumbo Salted Peanuts...the peanuts were actually si
3 BOOOLQOCHO ABXLMWJ Natalia Corres " 1 1 4 1.22e+09 "Delight" saysitall This is a confection that has been around a few centuries. It is a light, pillowy ¢
4 BOOOUAOQIQ A395BORCKarl 3 3 2 1.31E+09 Cough Medicine If you are looking for the secret ingredient in Robitussin | believe | have found
5 BOO6K2ZZ7K A1UQRSCI Michael D. Bighi 0 0 5 1.35E+09 Great taffy Great taffy at a great price. There was a wide assortment of yummy taffy. Deli’
6 BOO6K2ZZ7K ADTOSRK1 Twoapennythin 1] 0 4 1.34E+09 Nice Taffy 1 got a wild hair for taffy and ordered this five pound bag. The taffy was all very
7 BOO6K2ZZ7K A1SP2KVK David C. Sullivar 0 0 5 1.34E+09 Great! Just as good i This saltwater taffy had great flavors and was very soft and chewy. Each candy
8 BOO6K2ZZ7K A3JRGQVEPamela G. Willi: 0 0 5 1.34e+09 Wonderful, tasty taf This taffy is so good. It is very soft and chewy. The flavors are amazing. | woul
9 BOOOE7L2R4 AIMZYO9 R. James 1 1 5 1.32E+09 Yay Barley Right now I'm mostly just sprouting this so my cats can eat the grass. They love
10 BOO171APVA A21BT40V Carol A. Reed 0 0 5 1.35E+09 Healthy Dog Food This is a very healthy dog food. Good for their digestion. Also good for small pu

Raw dataset

Distribution of the dataset Word Count Distribution in Amazon Reviews
1400
2
1200
3 1000 -
2 g 800 4
[T} 1 L]
Q2
= 2
& 600
4
400 4
5 200 A
0 1000 2000 3000 4000 5000 6000 0- T T T T T ~T
0 250 500 750 1000 1250 1500 1750

Number of samples
Word Count

Q Preprocessing
PA RT - Tokenization

- Preparing Data for the Model

Framework used

o import torch
import torch.nn as nn
import torch.nn.functional as F
f torch.utils.data import Dataset, Dataloader
f torchtext.data.utils import get tokenizer
torchtext.vocab import build vocab from iterator

from torch.nn.utils.rnn import pad_sequence

Importing torch and its
extensions.

Methodology For Pre-
Processing

-

\

. J

Convert Implement size
tokenized text consistency for Create batches
to tensor all tensors

Tokenization

‘We Love NLP!

PyTorch Tokenizer!
tokenizer = get_tokenizer("basic_english")

def yield_tokens(data_iter): - Convert text to tokens
for text in data_iter:
yield tokenizer(text)

Ciinnnce 'revie % o L Aiir dAatacet witl AV AW C
SUPPOSE 2vi1iew dala 1S you datase Wil reviews

vocab = build_vocab_from_iterator(yield_tokens(x_data), specials=["<unk>"]) - Building vocab
vocab.set_default_index(vocab["<unk>"1)

object!

Methodology For Pre-
Processing

é:)
Convert
tokenized text
to tensor

. J

Implement size
consistency for Create batches
all tensors

Converting tokenized text to tensors

tensor of dimensions [6] tensor of dimensions [6,4] tensor of dimensions [4,4,2]
(vector of dimension 6) (matrix 6 by 4)

CLustom Dataset
clacs PeviewDataset(Dataset): Function to tokenize text and convert to
def __init_ (self, texts, labels, vocab): - ”|0ng” datatype tensor.
self.texts = [
torch.tensor(vocab(tokenizer(text)), dtype=torch.long) for text in texts

1
self.labels = labels

def __len__(self):
return len(self.texts)

def _ getitem_ (self, idx):
return self.texts[idx], self.labels[idx]

Methodology For Pre-
Processing

@)

Implement size
consistency for
all tensors

. J

Convert
Tokenization tokenized text
to tensor

Create batches

Implementing size consistency for

(0] (0] (0]

a a [¢] a a
n 12 Padding n 12
22 a2 : ax 922
0 0 0

tensors

collate fn(batch):

texts, labels = zip(*batch)
texts padded = pad_sequence(texts, padding value=vocab[“<pad>"]
labels = torch.tensor(labels, dtype=torch.long)
return texts_padded, labels

Methodology For Pre-
Processing

@)

Create batches

. J

Convert Implement size
Tokenization tokenized text consistency for
to tensor all tensors

x_train, x_test, y train, y test = train_test split(
x_data, y data, test size=0.2, shuffle=Tru

)

train data = ReviewDataset(x train, y train, vocab) : : :
train_loader = DatalLoader(train_data, batch _size=32, shuffle=True, collate fn = collate fn)
test data = ReviewDataset(x test, y test, vocab)
test_loader = DatalLoader(test _data, batch_size=32, shuffle=True, collate fn = collate fn)

Creating batches

P Q RT il Model Development
- Creating Neural Network Model
- Defining training and validating

functions
3 - Training and testing the model!

Neural Networks

We used Neural Networks, which are a type of model
inspired by human brain functioning to analyze the
sentiment of Amazon reviews.

Embedding Layer: model that translates numbers
(representing words) into vectors that capture the
meaning of words.

EMBEDDING Linear layer
LAYER

7 X
XA
0 e
—P .

y

&

Creating the neural network

5 neural(nn.Module):
__init_ (self, num_class):

super(neural, self).;ﬁinif;ﬁ()

self.emﬁedding :‘nn.Embeddihg(vocabﬁsize, hidden size)
self.embedding.wéiéht.requiresigrad =

seif.fc ; nn.Linear(hiddehisize, numfclésses)

self.init_weights()
f init_weights(self):
initrange = 0.05 en r y .
self.fc.weight.data.uniform_(-initrange, initrange)
self.fc.bias.data.zero () i i bi
f forward(self, x):

x = self.embedding(x)

x = torch.mean(x, 1)

x = self.fc(x)

return x

N

Defining embedding layer

Setting gradient calculation to TRUE

Defining linear layer

Defining the hierarchy of the neural
net

Initiating models and other features

True probability distribution
(one-shot)

Initial

" Gradient
weight ™

H(p,q) = — 2 p(x)log q(x)

xeclasses

.J
il Global cost minimum

)

Your model’s predicted
probability distribution

Cross entropy Loss Stochastic Gradient Descent

model = neural(num classes).to(device)
loss function = nn.CrosstEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr = .5)

Hyper-parameter

Training and validating models

S » [- N - [-

f train_func(model, train_loader, optimizer, loss function):

t Initializing variables
train_loss = @

train _acc = @
num_examples = ©
model.train()

for eac tch in train data loader
for idx, batch in enumerate(train loader):

the ter

input_text, labels = batch[@], batch[1]

Parse batch and extract

input_text = input_text.t()

¥ clear optimizer gradlent

optimizer;zeroigrad()

wr for text and corresnonding
r] t and c ¢ g

forward input text through model

output = model(input_text)

compute loss

backpropagate loss
loss = loss_function(output, labels)

loss.backward()

optimizer.step()

Compute total loss and accuracy
train_loss += loss.item()

train_acc += (output.argmax(1l) == labels).sum().item()
num_examples += labels.size(®)

return train_loss / num_examples, train_acc / num_examples

P A RT 711 RESULTS

- Training and Testing Accuracy scores.

z

Training Progress: 84%|_ | 42/50 [©2:13<@0:22, 2.81s/epoch]Epoch: 42
Loss: ©.0345(train) Acc: 62.2%(train)
Loss: ©.08356(valid) | Acc: 62.3%(valid)

Training Progress: s6%||Jl | 43/50 [02:16<00:19, 2.74s/epoch]Epoch: 43
Loss: ©.8347(train) | Acc: 62.1%(train)
Loss: ©.0342(valid) Acc: 62.5%(valid)

Training Progress: 88%|_ | 44/50 [02:19<@0:16, 2.70s/epoch]Epoch: 44
Loss: ©.0349(train) Acc: 61.9%(train)
Loss: ©0.8346(valid) | Acc: 62.6%(valid)

Training Progress: 99%|_ | 45/50 [@2:22<00:14, 2.90s/epoch]Epoch: 45
Loss: ©.0345(train) Acc 62.2%(train)
Loss: @.8355(valid) | Acc: 62.5%(valid)

Training Progress: 92%|_ | 46/50 [©2:25<@0:11, 2.89s/epoch]Epoch: 46
logss: O Ql/l?ffr:nn\ Acc: 61 Q/I"I'r'n1n\

Loss: O. 9386(va11d) Acc: 62. 6/(valld)

Training Progress: 94%|_ | 4a7/50 [02:28<@0:09, 3.01s/epoch]Epoch: 47
Loss: ©.0347(train) Acc: 61.9%(train)
Loss: ©.0349(valid) | Acc: 62.1%(valid)

Training Progress: 96%|_| 48/50 [02:31<00:05, 2.90s/epoch]Epoch: 48
Loss: ©.0344(train) Acc 62.2%(train)
Loss: ©0.0346(valid) Acc: 62.3%(valid)

Training Progress: 98%|_| 49/50 [©2:33<00:02, 2.74s/epoch]Epoch: 49
Loss: ©.0343(train) Acc: 62. SA(traln)
Loss: 0.0364(valid) | Acc: 62.6%(valid)

Training Progress: 100%||]| s¢/5e [02:35<00:00, 3.11s/epoch]Epoch: 5@
Loss: ©.0346(train) | Acc: 62.5%(train)
Loss: ©.0351(valid) | Acc: 62.7%(valid)

| time in @ minutes, 3 seconds

| time in @ minutes, 2 seconds

| time in @ minutes, 2 seconds

| time in @ minutes, 3 seconds

| time in @ minutes, 2 seconds

| time in @ minutes, 3 seconds

| time in © minutes, 2 seconds

| time in @ minutes, 2 seconds

| time in © minutes, 2 seconds

The accuracy seems to cap off around 63 percent.

PA RT 4l Hyperparameter tuning.

- Evolving the neural net to deep
neural net.

- Varying learning rate.
- Varying number of epochs.

- Varying batch size.

Training Progress: o7 I

poch: 98 | time in @ mi
Loss: nan(train)
Loss: nan(valid)
Training Progress: 98%|
poch: 99 | time in @ mi
Loss: nan(train)
Loss: nan(valid)
Training Progress: 99%|

Evolving the net to a deep net!

nutes, 3 seconds

Acc:

9.3%(train)

| 97/100 [©5:11<00:10,

Acc: 9.6%(valid
| 98/100 [85:15(69:96,

nutes, 3 seconds

Acc:

9.3%(train)

Acc: 9.6%(valid
| 99/100 [05:18(68:93,

poch: 186 | time in © minutes, 3 seconds
Acc:
Acc:

Loss: nan(train)
Loss: nan(valid)
Training Progress: 100%|

Deep nets are extremely bad. The resulting
accuracy is less than 10%.

9.3%(train)
9.6%(valid

| 100/100 [@5:22<00:00,

3.39s/epoch]E

3.36s/epoch]E

3.41s/epoch]E

3.22s/epoch]

Iterating over learning rate

Learning rate vs accuracy

—— Train data
- Test data

The best learning rate is around 0.8. After that the
validation accuracy becomes constant.

0.4 0.6
Learning rate

Iterating over number of epochs

Number of epochs vs accuracy

—— Train data
—— Test data

It seems like that the accuracy keeps increasing with
the number of epochs. Lets test that!

40 60
Number of epochs

Trying number of epochs = 200

S et ey e
Training Progress: 98%|
poch: 198 | time in @ minutes, 1 seconds

Loss: @.0351(train) Acc: 56.8%(train)

Loss: @.0335(valid Acc: 62.6%(valid
Training Progress: 99%]| | 198/200 [08:20<00:03,

poch: 199 | time in @ minutes, 1 seconds
Loss: @.0352(train) Acc: 56.9%(train)

Loss: @.033@(valid Acc: 62.5%(valid
Training Progress: 100%| | 199/200 [@8:21<00:01,

poch: 200 | time in @ minutes, 1 seconds
Loss: @.0352(train) Acc: 57.0%(train)

Loss: @.0342(valid Acc: 62.6%(valid
Training Progress: 100%| | 200/200 [08:22<00:00,

So the accuracy does not keep rising with number
of epochs. Accordingly, there must be a cutoff.
Regardless, the accuracy is around 65 percent. But it
could be said that the best accuracy comes around
epoch size to be 100.

| 197/200 [@8:18<00:06,

2.18s/epoch]E

1.93s/epoch]E

1.78s/epoch]E

2.51s/epoch]

Accuracy

Iterating over batch size

Batch size vs accuracy

—— Train data
Test data

40 50
Batch size

It seems that batch size of 32 has the highest
accuracy.

|{_|I Future Work
PART

- Possible steps to increase model
accuracy.

Pre-trained word
embeddings

Future

8 Putien Liyes

.I alby Cronecwd Layer

Luny
Frabedding *

Flatien

Layer

Convolutional
neural network

PreProcessing

Stemming

Lowercase Conversion

Preprocessed Text
Ready for Analysis

Tokenization

| Stopwords Removal

S =

s
Multiple Documents

Better pre-processing
for text data.

