

VIRTUAL WORK METHOD & PROJECTIONS

PARAMETERS

1. Defining the position vectors for center of mass in
respective frames.
 $rc_1, rc_2, rc_3 = \begin{bmatrix} 0.5 \\ 0 \\ 0 \end{bmatrix}$ respective frames.

rc_1, rc_2, rc_3 =
$$
\begin{bmatrix} 0.5 \\ 0 \\ 0 \end{bmatrix}
$$

2. Find the position vectors for center of mass in

respective frames.
 rc_1 , rc_2 , $rc_3 = \begin{bmatrix} 0.5 \\ 0 \\ 0 \end{bmatrix}$

2. Find the rotation matrices around $z - \alpha$ xis for each

transformation.
 $R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta$ transformation.

3. Find the angular velocities with respect to each frame.

$$
R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

3. Find the angular velocities with respect to each frame.
Omega01_11 =
$$
\begin{bmatrix} 0 & -\sin^2(\theta_1(t))\frac{d}{dt}\theta_1(t) - \cos^2(\theta_1(t))\frac{d}{dt}\theta_1(t) & 0 \\ \sin^2(\theta_1(t))\frac{d}{dt}\theta_1(t) + \cos^2(\theta_1(t))\frac{d}{dt}\theta_1(t) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

Omega22 =
$$
\begin{bmatrix} 0 & -\frac{d}{dt}\theta_1(t) - \frac{d}{dt}\theta_2(t) & 0 \\ \frac{d}{dt}\theta_1(t) + \frac{d}{dt}\theta_2(t) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

Omega33 =
$$
\begin{bmatrix} \frac{d}{dt}\theta_1(t) + \frac{d}{dt}\theta_2(t) + \frac{d}{dt}\theta_3(t) & -\frac{d}{dt}\theta_1(t) - \frac{d}{dt}\theta_2(t) - \frac{d}{dt}\theta_3(t) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{3}
$$

BASIC DEFINITIONS

7. Initialize the mass matrix

8. Initialize the frame rotation matrix

9. Initialize the external forces matrix: G.T

BASIC DEFINITIONS

RESULTS AND DISCUSSION

-
-
-
- -

 $\frac{1}{2}$
 $\frac{1}{2}$

With no torques, the system should be $_{-0.04}$ stationary and accordingly the angles $\frac{1}{2}$ don't change from their initial conditions of 0 degrees.

```
\vertW_2 = sp.Matrix([[0],[0],[-9.81]\vert)
W_3 = sp.Matrix([[0],[0],[-9.81]\vert
```


Example 1.1 and the second period is a set of the second period in the negative $\frac{1}{2}$ and $\frac{1}{2}$ and The second test case was giving weight to all linkages and having 0 torques so the linkages can behave as free pendulums. All masses were fixed at 1 and the For example in the negative $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ a behaved like pendulums. Due to the chaotic nature of the system, the above condition gets worse as the number of pendulums increase. Therefore, the length and mass of the second pendulum were made .0001 to see if the first pendulum would still behave like an actual pendulum. The test results are seen in next slide.^{20XX}

As expected, the first mass behaves exactly like a pendulum when effects of second and thirst pendulum are made negligible.

-
-
-

 0.2

Theta 1 dot vs time

With torque input as a square function, the system has a lot of oscillation $\frac{\frac{1}{8}}{\frac{2}{8}}$ in its velocities. Practically this does not happens with a fish since the $\frac{1}{2}$ motion is pretty smooth. So clearly the square input torque is not the way to go. The reason for the smooth y vs x position is because the frequencies are so small that the fish moves really slow (as seen in the video)

₁ RecForth

Switching torques to sin waves helps the system to reduce oscillation also making the system smoother. However, the system still overlaps with itself/which is not good.

RecF

 $\sqrt{\frac{1}{D}}$

TORQUES WITH SPRINGS

As expected, the springs helped the system in not overlapping. However, the springs energy never dies and makes the system/extremely chaotic as time goes on. Clearly the graphs suggest the same because the magnitudes are extreme.

AND DAMPERS

RecForth

As expected, adding dampers along with springs helps the system loose the energy/built up by the springs and cools the system down. In fact, this works best in replicating the motion of the fish. Even though it does

