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PARAMETERS

Parameter
L1, L2, L3
W1, W2, W3
M1, M2, M3

J1.1,J1.2,J2.1,J2 2,131,
J3.2

J1_3
J2_3
J3_3
Tau_1, Tau_2, Tau_3
K - spring constant

B — damping constant

Magnitude (units)
1

01

1

0

(1/12) * M1 * (L1"2 + W1"2)
(1/12) * M2 * (L2"2 + W2"2)
(1/12) * M3 * (L3"2 + W3"2)
Our forced inputs!

Variable

variable



BASIC
DEFINITIONS

0 sin® (8, (£)) 26, (t) — cos? (6,(t)) L6, (t)
Omega0l_11 = |sin® (A1(t))0:(t) + cos® (61(t)) %61 (t) 0
0 0
b G61(t) — 56:(t) 0
Omega02_22 = a1 (t) + 70:2(1) 0 0
0 0 0
0 L61(t) — £65(t) — 265(t) O
Omega03_33 = S01(t) + 502(2) + 50s(2) 0 0
0 0 0
20XX

1. Defining the position vectors for center of mass in
respective frames.

0.5
rc 1,rc_2,rc_3= 0
0

2. Find the rotation matrices around z — axis for each
transformation.

cosf sinf 0
R.(0) sinff  cosf 0
0 0 1

3. Find the angular velocities with respect to each frame.



4. Find linear velocities

|:0.551n( (t))}u 1(t)]
VC_0 = 0.5 cos (61(t)) 501 (t)

0.5 (ﬁe ((£) + <L0,(t)) sin (6, (2) + 6(2)) —5111(91(t))?‘7’{91(t)
ve 1= | 05 (56u(t) + ;1,9 (t ))wb(el(é) + 03(t)) + cos (61(t)) %6, (t)
VC 2 =
BASIC )+ L6,(2)) sin (6 (t) + 0(t)) — 0.5 (464 (¢) ’e(t)_ Ly (£)) sin (6, (£) + 05 (t) 6()) (61(£)) 26, (¢)
ks sin 501(t) + 562(%) + 363 sin + 65(t) + 05 — sin (0,(t)) 561
DEFINITIONS +%h))cmw]u)w(mﬂw(f,'fh{t) + 265(t) + 265(1)) cos (Bu(t) + 2(2) + ())fcos(al(t))%'el(t)}
0

5. Initialize the generalized coordinates

o 0
13(?)
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6. Find Jacobian matrix (18 * 3)



7. Initialize the mass matrix

0
my

my

0

ma 0

0

0
ms

ma

0

0

0

0

mg 0 0 0 O

0

0

0

00 Jig 00

0

0 0
Jz 0 0 0

0
0

0
@Y s

0
0

BASIC
DEFINITIONS

8. Initialize the frame rotation matrix

G.T

9. Initialize the external forces matrix

2 0 0 m—73 0 0 73

)]

1

O 00 0 0 O0O0O0OO0O0O0
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TEST O — UNIT TEST

Theta 1 vs time Theta 2 vs time

t1l(time): i
turn O#.5%np.sin(.5*tir 0.04 +
t2(time):
return @#-4 0.02
f t3(time): ,’3‘ _ 0024
furn 882%ni E 0.00 8
g § 000
-0.02 ,E
-0.02
-0.04
T : , : -0.04 1
0 2 4 6 8 10
Time [sec] T T T
0 2 4 6
Time [sec]
Theta 3 vs time
0.04
_ 0.02
% 0.00
£
-0.02 4
With no torques, the system should be .
stationary and accordingly the angles

Iy 0 : ; : : o
don't change from their initial Time [sec]
conditions of 0 degrees.
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TEST O — UNIT TEST

W 1 = sp.Matrix([
[el,
[el,
[-9.81]

1))

W 2 = sp.Matrix([
[el,
[e],
[-9.81]

D

W_3 = sp.Matrix([
[e],
[el,
[-9.81]

Theta 1 vs time Theta 2 vs time

Thetal [rad]
Theta2 [rad]

0 2 4 [ 8 10 T T T T
Time [sec] 0 2 4 [ 8 10
Time [sec]

Theta 3 vs time

Theta3 [rad]
o
=4

W
The second test case was giving weight to all linkages and having 0 torques so
the linkages can behave as free pendulums. All masses were fixed at 1 and the
force was applied in the negative z direction. As expected all the masses
behaved like pendulums. Due to the chaotic nature of the system, the above
condition gets worse as the number of pendulums increase. Therefore, the
length and mass of the second pendulum were made .0001 to see if the first
pendulum would still behave like an actual pendulum. The test results are seen
in neXt Slide, 20XX PRESENTATION TITLE 8



TEST O — UNIT TEST

W 1 = sp.Matrix([
(0],
(@],
[-9.81]

D

W 2 = sp.Matrix([
[el,
[e],
[-9.81]

D

W 3 = sp.Matrix([
[e],
[e],
[-9.81]

Thetal [rad]

-1.0 4

Theta 1 vs time Theta 1_dot vs time

[rad/sec]

Thetal_dot

2 4 6 8 10 0 2 4
Time [sec]

Y vs X position

Y position [m]
|
o
F <9

|
g
o

-0.8 1

-1.0 1

-100 -075 -050 -025 000 025 050 075 100
X position [m]

As expected, the first mass behaves exactly like
a pendulum when effects of second and thirst
pendulum are made negligible.

20XX PRESENTATION TITLE

Time [sec]

&

10



TEST 1 — SINUSOIDAL TORQUES

Theta 1_dot vs time

050 02
t1(time): 025

n @ _ oo ¥ :;

.t2(tlrl'legj-!- » ‘;:—ozs E_cl

t3(time): :.2_-050 é-,“

2*signal.square(2 * np.pi * 5 * time) 07 2 s

-1.00
125 o4
100 125 150 1 Ti posgzt:)?, [m]Z 25 250 275 3.00 0 ‘2 4 i 5 8 10
Theta 2 dot vs time Theta 3 dot vs time

Lo - 30

25

T 05 'E 20

5 o :; i

5. g os

g 0.5 2 .

=10 =05

0 2 2 6 8 10 7100 2 4 5 8 10
Time [sec] Time [sec]

™2 RecForth 3} ) Final theta of the fish
UHD Scree WIRECOFAEH : L
T
6
Ts
With torque input as a square function, the system has a lot of oscillation 3.
in its velocities. Practically this does not happens with a fish since the gs
. . . . 2
motion is pretty smooth. So clearly the square input torque is not the way |
to go. The reason for th¢ smooth y vs x position is because the b

A 6 é 10
frequencies are so small that the fish moves really*slow (as seen in the Sl 10

vidan)

o
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TEST 2 — SQUARE TORUQES

tl(time):
1*np.sin(.5*time)

t2(time):
%)

t3(time):
2*np.sin(4*time)

s RecForth

UHDiScreen Recorder

Switching torques to sin waves helps the
system to reduce oscillation also making the
system smoother. However, the system still
overlaps with itself/ which is not good.

20XX

Y position [m]

Theta2_dot [rad/sec]

Y vs X position

Theta 1_dot vs time
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TEST 3 — SINUSOIDAL
TORQUES WITH SPRINGS

t1l(time):
I 1*np.sin(.5*time)
t2(time):

f t3(time):
2*np.sin(4*time)

= taul-tau2 + k*(theta2 - thetal)*(11/2)
= tau2-tau3 + k*(theta3 - theta2)*(12/2) #
= tau3

#™Na RecFarth

UHD ScrgeniRecordery

As expected, the springs/helped the system in not
overlapping. However, the springs energy never dies
and makes the system /extremely chaotic as time goes
on. Clearly the graphs/ suggest the same because the
maanitudes are extréme.

Y position [m]

Theta2_dot [rad/sec]

Y vs X position

Theta 1_dot vs time

4 6 8 10
Time [sec]

Theta 3 _dot vs time

10

200
.0
)
a
-1
.
= -200
=
.UI
=
2
@ _
2 400
-600
T
-2 -1 0 1 2 3 o 3
X position [m]
1e183 Theta 2_dot vs time
e 2000
= T 1000
2
g
s
10 2 0
UI
m
£ 1000
05 e
-2000
00
0 2 4 6 8 10
Time [sec]
1e241 Final theta of the fish
14
12
=10
=)
E
= 08
£
= 06
£
04
0.2
0.0
0 2 4 6 8
Time [sec]

PRESENTATION TITLE

4 6 8 10
Time [sec]

12



TEST 4 — SIN TORQUES WITH SPRINGS
AND DAMPERS

Y vs X position

E
f t1(time): g
r 1*np.sin(.5*time) .
t2(time):
t3(time): .} 0 1 2 3
v X position [m]

taul-tau2 + k*(theta2 - thetal)*(11/2) + b*(theta2_dot - thetal_dot)*11/2
tau2-tau3 + k*(theta3 - theta2)*(12/2) + b*(theta3_dot - thetal_dot)*12/2
tau3

Theta 2_dot vs time

Theta2_dot [rad/sec]
~
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Final theta of the fish
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As expected, adding damipers along with springs helps the £

system loose the energy/built up by the springs and cools '
t, this works best in replj(gngting the ° :
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